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Global existence

We consider the focusing NLS:{
i∂tu + ∆u + |u|pu = 0, (t, x) ∈ (T−,T+)× R2,

u�t=0 = u0 ∈ H1(R2).

The conservation of mass ‖u(t)‖L2 and energy

E (u) =
1

2
‖∇u(t)‖2

L2 −
1

p + 2
‖u(t)‖p+2

Lp+2 ,

combined with Gagliardo-Nirenberg’s inequality yields

E (u0) ≥ ‖∇u(t)‖2
2

(
1

2
− Cp+2

p + 2
‖u0‖2

L2‖∇u(t)‖p−2
L2

)
.

 for p < 2 or for p = 2 and ‖u0‖2
L2 <

2
C4

= ‖Q‖2
L2 , the solution is

global in time (Weinstein ’83).
(Q is the minimizer of G-N’s inequality, solution of ∆Q + Q3 = Q)
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Blow-up solutions

Glassey’s criterium ’77:

∂2
t

∫
|x |2|u(t, x)|2dx = 16E (u0)− 4(2p − 4)

p + 2
‖u(t)‖p+2

Lp+2 dx ,

 for p ≥ 2 , xu0(x) ∈ L2, E (u0) < 0, the solution blows-up.

For the critical power p = 2, the pseudo-conformal transformation of
e itQ(x) is the solution

S(t) =
e i

|x|2

4t

t
e

i
t Q
(x
t

)
,

 ‖Q‖L2 is the critical mass for blow-up (Weinstein ’83).

S(t)-type solutions are the only blow-up solutions of critical mass
(Merle ’93). The rate of blow-up is 1/t.

∃ many solutions S(t − T , x) + w(t, x), with w smooth at t = T
(Bourgain-Wang ’97, Krieger-Schlag ’09), of 1/t-type.

 The pseudo-conformal blow-up is unstable.
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Blow-up solutions

There exist an open subset of initial data such that the solutions

blow up, and at the blow-up rate is
√

log | log |t||
|t| (Perelman ’01,

Merle-Raphaël ’04)
 The ”log-log” blow-up is stable.

The log-log blow-up is also structurally stable (Planchon-Raphaël
’01 on bounded domains, Burq-Gérard-Raphaël on manifolds).

On star-shaped domains Glassey’s principle is still valid (Kavian ’87).

∃ S(t)-type solutions on domains and more generally at flat points of
a surface (Ogawa-Tsutsumi ’90, Burq-Gérard-Tzvetkov ’03)
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Question

Q : what happens with the frontier between global existence and blow-up
when the geometry varies ? do 1/t blow-up solutions survive ?

Geometry is known to change things :

The regularity s of the threshold local wellposedness/instability in
Hs for the defocusing cubic NLS varies :
s = 0 for R2 (Cazenave-Weissler ’90, Christ-Colliander-Tao ’03),
s = 1

4 for S2 (Burq-Gérard-Tzvetkov ’02,’05).
This is not an issue of the compactness of S2 :
s = 0 on T2 (Bourgain ’93, Burq-Gérard-Tzvetkov ’02).

Dispersive properties are weaker for positive curvature (on the
sphere), and stronger for negative curvature, enough to lower the
short/long-range threshold power for scattering properties of the
defocusing NLS (Banica, Pierfelice, Banica-Carles-Staffilani,
Banica-Duyckaerts, Banica-Carles-Duyckaerts, Anker-Pierfelice,
Ionescu-Staffilani ’05-’10 on hyperbolic space, Damek-Ricci spaces,
rotationally symmetric manifolds)
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Global existence/Blow-up

Theorem (B. ’07)

The solutions of NLS on H2 are global for p < 2 or for p = 2 and small
initial data. Blow-up occurs if p ≥ 2, U0 radial, dH2 (0, x)U0(x) ∈ L2(H2),
E (U0) < c ‖U0‖2

L2(H2), for some positive geometric constant c.

Gagliardo-Niremberg inequalities are valid with constant larger or equal
than the one on R2

 global existence for p < 2 or for p = 2 and ‖U0‖2
L2(H2) <

2

C hyp
4

≤ 2
C4

.

In the radial case, by taking U(r) =
√

r
sinh r u(r), if U satisfies NLS on H2

then i∂tu + ∆u −
(

1
2 −

1
4

(
cosh2

sinh2 − 1
r2

))
u +

(
r

sinh r

) p
2 |u|pu = 0.

 global existence for p = 2 and ‖U0‖2
L2(H2) = ‖u0‖2

L2(R2) <
2
C4

= ‖Q‖2
L2 .
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Global existence/Blow-up

The second derivative of ‖U(t, x)dH2 (0, x)‖2
L2(H2) is, for radial solutions U,

16E (u)−
∫
H2

|U|2∆2
H2r2− 4p

p + 2

∫
H2

|U|p+2

(
cosh r

sinh r
r − 1

)
−8

p − 2

p + 2

∫
H2

|U|p+2.

 for p ≥ 2, r U0(r) ∈ L2, E (U0) <
inf ∆2

H2 r

16 ‖U0‖2
L2(H2), U(t) blows-up.

Remarks :

p = 2 is the critical power for blow-up,

null-energy initial data leads to blow-up, contrary to R2,

the ground state on H2 is of positive energy and mass smaller than
Q,

the non-radial calculation does not allow to conclude the same,

this argument relies also on the fact that there is only one chart,

for the sphere, a Glassey criterium was given for radial initial data
symmetric with respect to the equator (Ma-Zhao ’07).
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Passage to the inhomogeneous NLS with potential on R2

We choose as a more general toymodel rotationnaly symmetric surfaces
M given by metrics of the form ds2 = dr2 + φ2(r)dω2, so that

∆M = ∂2
r +

φ′

φ
∂r +

1

φ2
∆S2 .

Examples : R2 (φ(r) = r), H2 (φ(r) = sinh r), intermediate manifolds
(e.g. φ(r) = r + r5), compact perturbations of R2 or H2.
For radial solutions U of the cubic NLS on M,

i∂tu + ∆u −
(
φ′′

2φ
− 1

4

(
φ′2

φ2
− 1

r2

))
︸ ︷︷ ︸

V

u +
r

φ︸︷︷︸
g

|u|2u = 0,

with U(t, r) =
√

r
φ(r) u(t, r).

We shall get as a result that if V and g are bounded at infinity, and
φ(3)(0) = 0, then there exists a “pseudo-conformal” blow-up solution.
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Pseudo-conformal blow-up for the inhomogeneous NLS
with potential

Theorem (B.-Carles-Duyckaerts ’09)

We consider
i∂tu + ∆u − V (x)u + g(x)|u|2u = 0.

Assume V (x), g(x) ∈ R, V (0) = 0, g(0) = 1, all their derivatives
bounded, and

Dg(0) = 0, D2g(0) = 0.

Then there exists T > 0 and a solution ũ ∈ C 0((0,T ),Σ) such that∥∥∥ũ(t)− S̃(t)
∥∥∥

Σ
−→
t→0+

0,

S̃(t, x) :=
e i

|x|2

4t −iθ(
1
t )

t
Q
(x
t

)
, θ(τ) ∼ τ, τ → +∞.
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Comments

Works also in dimension 1 (the mass-critical equation is quintic).

The result was unknown even in the case g = 1, i.e equation

i∂tu + ∆u − Vu + |u|2u = 0.

Some explicit blow-up solutions are known only in very particular
cases.

Specific to the mass-critical nonlinearity. No explicit blow-up
solutions are known for other nonlinearities.

The difficulty is to weaken the assumptions on V and g at 0.
Assuming that they are very flat

V (x) = O(|x |7), g(x) = O(|x |9) as x → 0,

the proof reduces essentially to the argument of Bourgain and Wang.

Bourgain-Wang solutions were also constructed for very flat
perturbations of mass-critical homogeneous Hartree type
nonlinearities (Krieger-Lenzmann-Raphaël ’08).
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Comments

After pseudo-conformal transformation, the proof is reduced to a
stability result for the Schrödinger equation around e itQ . This type
of results goes back to Weinstein ’85 for mass-subcritical and
mass-critical nonlinearity. In a supercritical context see Beceanu ’09.

Assume ∀x , g(x) ≤ g(0) = 1. Then

‖u0‖L2 < ‖Q‖L2 =⇒ u is globally defined.

By Merle ’96 any minimal mass blow-up must concentrate at a
maximum, and there exist blow-up solutions for all masses larger but
close to ‖Q‖L2 . The blow-up solution ũ is a minimal mass blow-up
solution.

The existence of a mass-critical solution blowing-up at 0 if
Dg(0) = 0 and D2g(0) 6= 0 was proven by a different method by
Raphaël-Szeftel ’10. They also prove uniqueness. If their methods
extends to the case with potential, it yields a pseudo-conformal
blow-up solution on H2 of ‖Q‖L2 mass.
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About the proof

We want to construct a solution u of (NLSp) defined on ]0,+∞[ that
blows-up at t = 0.

1. Linearization argument (Bourgain-Wang strategy). After a
pseudo-transformal conformation, include some linear terms with −∆.
The new equation is i∂t f − Lf = B(f ), with L the linearized operator
around e itQ,

L(f ) = −∆f + f − 2Q2f − Q2f .

Works for polynomially very flat V and g .

2. Modulation. The polynomial instability of L is caused by 8 so-called
secular modes. We use time dependent transformations to avoid these
secular modes.
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Bourgain-Wang strategy

Pseudo-conformal transformation. Let

v(t, x) = PC(u)(t, x) =
e

i|x|2

4t

t
u

(
1

t
,
x

t

)
.

Then u is solution to (NLSp) (with g = 1 for simplicity) if ṽ satisfies

i∂tv + ∆v − 1

t2
V
(x
t

)
v + |v |2v = 0.

Linearization. Write v = e it(Q + h), then

i∂th − Lh − 1

t2
V
(x
t

)
Q +

1

t2
V
(x
t

)
h + . . . = 0.

To get a 1/t blow-up solution u it is sufficient to show the existence of a
solution h such that

lim
t→∞

t1+ε‖h(t)‖H1 + tε‖xh(t)‖L2 = 0.
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Algebraic instabilities of the linearized operator 1

We must solve

h(t) = −i
∫ +∞

t

e−i(σ−t)L 1

σ2
V
( x
σ

)
Q(x) dσ + . . .

Behaviour of e itL?

Theorem (Weinstein ’85, Kwong ’89)

H1 = S⊕M, dim S = 8,

where S and M are stable by e itL and (δ0 > 0 is a small constant)∥∥e itLPM(f )
∥∥
H1 ≤ C‖f ‖H1 ,∥∥e itLPS(f )

∥∥
H1 ≤ C (|t|+ 1)3

∥∥fe−δ0x
∥∥
L2 .

The fixed point argument works only if V very flat at 0.
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Algebraic instabilities of the linearized operator 2

Noting L = iL, we must solve

h(t, x) = −
∫ +∞

t

e(σ−t)L i

σ2
V
( x
σ

)
Q(x) dσ + . . .

The polynomial unstability of etL comes from the generalized kernel S :∫ ∞
t

e(σ−t)LPS(F (σ, x))dσ =
∑

1≤j≤6

νj(t)nj(x),

where

ν′1 = 2ν4 − 2ν6 + µ1 , ν′2,k = 2ν3,k + µ2,k , ν′3,k = µ3,

ν′4 = 2ν5 + µ4 , ν′5 = −2ν6 + µ5 , ν′6 = µ6,

µα(t) = 〈F (t, x),mα(x)〉 =

∫
<F (t)<mα +

∫
=F (t)=mα,

m1 = i Q̃ , m2,k = xkQ , m3,k = −∂kQ , m4 = −1

2
|x |2Q − cQ

m5 = i(Q + x .∇Q) , m6 = −Q , nj ∈ Σ , span{nj} = S .

14/17



Focusing NLS on R2.
Focusing NLS on surfaces.

Inhomogeneous focusing cubic NLS with potential on R2.

Simple modulation argument

Starting again from the pseudo-conformal transformed equation

i∂tv + ∆v − 1

t2
V
(x
t

)
v + |v |2v = 0.

We first modulate v = ṽ e iθ(t) and then we define h by ṽ = e it(Q + h), so

h(t, x) = −
∫ +∞

t

e(σ−t)L
(

i

σ2
V
( x
σ

)
+ iθ′(σ)

)
Q(x) dσ + . . . .

We can choose θ′ such that ν′1 = 0, so that we gain another power in
time, and we can have a weaker flatness assumption on V at zero.
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Modulation argument

For any modulation,

v(t, x) =
e iθ1(t)+iθ2(t).x+iθ3(t)|x|2

λ(t)
ṽ

(
γ(t),

x

λ(t)
− β(t)

)
, γ̇(t) =

1

λ2(t)
,

by defining ṽ = e iτ (Q + h) in variables y = x
λ(t) , τ = γ(t),

∂τh + iLh = Fp(h) + Zp(h) + Zp(Q),

where

Zp(f ) = −i(p1f + p2.y f + p3|y |2f ) + p4.∇f + pp(f + y .∇f ).

The pj ’s are real functions of (θ, λ, β). In particular Zp(Q) ∈ S .

Given pj ’s with appropriate decay we recover by a fixed point (θ, λ, β).
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Construction of a solution

We want to find a fonction h such that there exists p for which{
∂τhS + iLhS = PSFp(h) + PSZp(h) + Zp(Q),

∂τhM + iLhM − PMZp(hM) = PMFp(h) + PMZp(hS).

Given a fonction h, we find p such that

Φ1(h)(τ) =

∫ ∞
τ

e(σ−τ)L (PSFp(h) + PSZp(h) + Zp(Q)) dσ

is spanned by only one secular mode (we assume V radial).

We prove the existence of Φ2(h) = φ solution (in M for all τ) of

∂τφ+ (iL− PMZp)(φ) = PMFp(h) + PMZp(hS),

by showing first energy estimates.

We perform a fixed point argument for (Φ1 + Φ2)(h).
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